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Abstract: Lesion detection is a critical component of disease diagnosis, but the manual
segmentation of lesions in medical images is time-consuming and experience-demanding. These
issues have recently been addressed through deep learning models. However, most of the
existing algorithms were developed using supervised training, which requires time-intensive
manual labeling and prevents the model from detecting unaware lesions. As such, this study
proposes a weakly supervised learning network based on CycleGAN for lesions segmentation in
full-width optical coherence tomography (OCT) images. The model was trained to reconstruct
underlying normal anatomic structures from abnormal input images, then the lesions can be
detected by calculating the difference between the input and output images. A customized network
architecture and a multi-scale similarity perceptual reconstruction loss were used to extend the
CycleGAN model to transfer between objects exhibiting shape deformations. The proposed
technique was validated using an open-source retinal OCT image dataset. Image-level anomaly
detection and pixel-level lesion detection results were assessed using area-under-curve (AUC)
and the Dice similarity coefficient, producing results of 96.94% and 0.8239, respectively, higher
than all comparative methods. The average test time required to generate a single full-width
image was 0.039 s, which is shorter than that reported in recent studies. These results indicate
that our model can accurately detect and segment retinopathy lesions in real-time, without the
need for supervised labeling. And we hope this method will be helpful to accelerate the clinical
diagnosis process and reduce the misdiagnosis rate.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Lesion provides a gold standard for initial disease diagnosis and subsequent treatment. Lesion
identification and localization are thus central objectives for common imaging modalities such
as magnetic resonance (MR), computed tomography (CT), and optical coherence tomography
(OCT). The huge number of medical images, for example, there are approximately 30 million
OCT procedures performed to detect retinopathy worldwide each year [1], provides extensive
sample data for research purposes. However, these images also make it labor-intensive and
time-consuming for doctors to review them manually. Some traditional methods have been
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proposed for the auxiliary reading of medical images, including level set [2] and kernel regression
[3] techniques. But these algorithms are typically slow, insufficiently robust, and overly sensitive
to noise. Deep learning (DL), which has been heavily studied in medical imaging, can often
overcome these issues. DL algorithms can generally be divided into supervised and unsupervised
categories, depending on whether labels are used in the training process.

Deep supervised learning models, which require elaborate labeling, have been proposed for
lesion segmentation in annotated medical images. Kamnitsas et al. proposed a 3D CNN for
segmenting brain lesions in MRIs [4]. Chen et al. proposed a dense-res-inception net to segment
multi-lesion structures in CT and MR brain images [5]. Lesion segmentation has also been
extensively studied in OCT images. For instance, Hu et al. proposed a deep neural network
with spatial pyramid pooling for segmenting subretinal fluid (SRF) and pigment epithelium
detachment (PED) lesions [6]. Ruwan et al. proposed an Unet-based architecture consisting of
encoding and de-coding blocks with skip-connections to segment intraretinal fluid (IRF), SRF,
and PED in labeled retinal OCT images [7]. Rhona et al. developed a novel multi-decoder
framework to segment drusen in OCT scans [8]. Each of these algorithms performed well with
custom or public datasets.

However, the training of supervised segmentation models needs large quantities of annotated
images with pixel-level labels, which requires diagnostic expertise and can be time-consuming
and cost-prohibitive. Besides, some annotations may lack sufficient detail for specific applications,
which will result in mislabeled or omitted subtle lesions that limit prediction capacity.

Unsupervised learning has attracted increased attention recently as it can be used without
labels. For example, Tajayasu et al. proposed a two-phase approach using joint unsupervised
learning and k-means clustering for pathological segmentation of lung cancer in micro-CT images
[9]. Chen et al. implemented an active contour without edges framework via a convolutional
neural network (CNN) to achieve high-quality bone segmentation in single-photon emission
computed tomography (SPECT) images [10]. Each of these models implemented unsupervised
segmentation using feature selection and clustering, which is sensitive to outliers and requires
significant computational runtime.

Between fully supervised learning and unsupervised learning, there is weakly supervised
learning, where the learning model can be trained with incomplete, inexact, or inaccurate labels.
It mitigates the need for full labels and makes sure the model is learning what we want. For
example, Hoel et al. proposed a weakly supervised model for cardiac image segmentation, they
only used 0.1% ground-truth labels but reached a performance close to full supervision [11].
And it’s typical for training a pixel-level lesion segmentation model with image or volume level
labels in the medical images, for instance, Wang et al. trained a classification model on chest CT
images to detect COVID-19 infectious and they located lesions by detecting the activation regions
of the model [12], similarly, Ma et al. proposed to segment geographic atrophy (GA) in retinal
OCT images by calculating the class activation map from a trained GA classification model [13].

The present study is comparable to recent works applying weakly supervised learning by image
translation. For example, Philipp et al. trained an autoencoder on healthy retinal OCT images
with image-level labels and used a one-class support vector machine to identify anomalies in
new data [14]. Similarly, Thomas et al. used a GAN-based technique to train a generative model
by labeled healthy retinal OCT scans. This algorithm successfully detected abnormalities in
new data with a combined anomaly score based on the trained model [15]. These and other
studies have successfully detected lesions by applying an autoencoder or GAN to identify normal
pathology, distinguishing abnormal markers by evaluating the posterior probability of test samples
generated by the trained model. However, these models were never introduced to real abnormal
samples during training, it’s difficult for them to guarantee the output is paired with the correct
input in the testing stage. Especially, as variations widely exist in retinal shapes and spatial
orientations in OCT images, it is tough to blindly acquire matching positive and negative retina
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samples. In state-of-the-art, preprocessing steps like layer segmentation, flattening, and patch
clipping are often included to reduce the impact of unpaired OCT data and match unassigned
images when testing, and additional post-processing steps are required to concatenate patches
into full-width-images [16]. Such steps can be highly time-consuming and difficult to optimize
or automate, which limits the clinical application of these techniques.

CycleGAN [17], which implements a ‘cycle consistent loss’ concept to achieve unpaired
image-to-image translation, has been widely used for unpaired style transfer in medical imaging.
This has included stain normalization in multi-center whole slide images (WSIs) [18], style
transfer between different lung X-ray datasets [19], and image variability reduction between
retinal images acquired with different OCT devices [20]. Moreover, some studies have proved
that CycleGAN can be implemented to detect lesions in brain MRI images and histology imagery,
where the appearance of lesions won’t change the shape of the anatomy severely [21–22]. The
results of these studies demonstrate the potential of the CycleGAN algorithm for transferring
texture styles in unpaired images.

To the best of our knowledge, few methods of image translation have been applied in the context
of weakly supervised lesion segmentation in full-width retinal OCT images due to the variations
in shape, thickness, and spatial orientation of the retinas. In this paper, a novel technique, based
on the CycleGAN algorithm, is proposed to detect and segment lesions in full-width retinal
OCT images by image translation. We trained a generative model to ‘repair’ the deformed
anatomy structures of the input abnormal samples by generating paired normal samples (it can
be explained as that the generated sample looks like the treated abnormal sample, where only
lesions area were reconstructed and others remain the same as the original sample). Then the
lesions markers were segmented by a simple comparison between the input and output images.
The whole segmentation process was blind to the ground-truth of the pixel-level segmentation
map, only image-level labels are needed, which is much easier to acquire. The framework for
this model is shown in Fig. 1.

CycleGANs were initially designed to transfer complex local textures between image domains
(i.e., CT and MR), not necessarily between objects of different shapes. But retinal lesions (such
as SRF, IRF) often lead to changes in retina shape, original CycleGAN didn’t perform well on
this mission. In this study, a customized network, where a dilated convolutional block-based
discriminator combined with a U-net generator, and a multi-scale structural similarity perceptual
reconstruction loss (MS-SSIM) were used to solve this problem. The customized architecture can
capture more global structure variabilities and the MS-SSIM can represent geometric differences
using area statistics, they can further assist the model in focusing on structural changes [23].
This approach was implemented using a public retinal OCT dataset, provided by [32], which
included more than 100,000 images with retinopathy labels. Results demonstrated that our model
performed well in reconstructing lesion areas from abnormal to normal anatomy, even in samples
with large shape deformations.

The main contributions of this paper can be summed as:
1) We proposed a CycleGAN based model to generate normal-look full-width retinal OCT

image from the input abnormal image and achieved lesion segmentation by calculating the
difference of them.

2) Instead of going through the complex pre-process like retina flattening and region of
interest clipping, the input images are fed to the model directly. A dilated convolutional
block-based discriminator and an MS-SSIM loss are introduced to overcome the variations
in shape, thickness, and spatial orientation of the retinas.

3) The proposed model works well in reconstructing normal-look retinal OCT images, even
when the retina is heavily distorted by the lesions. And a post-process is implemented to
locate multiple lesions.
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Fig. 1. The training process (top) and the anomaly detection process (bottom) for the
proposed model. After training, the GS→T is able to reconstruct normal samples (Ire) from
an abnormal input (Iin). Then the difference between the input and output is calculated (Ires),
and a further post-process is implemented to locate lesions (Iseg).

2. Method

The proposed technique was developed using a CycleGAN architecture, as shown in Fig. 1, and
typically consisted of two generators (GS→T , GT→S) and two discriminators (DS , DT ). The
GS→T is trained to generate target domain image from source domain input, to deceive the DT ,
who is trained in an adversarial manner to distinguish fake target domain images generated by
GS→T from real target domain images (and vice versa). In this study, the model was trained using
retinal OCT images, which were separated into abnormal (S) and normal (T) categories and input
to GS→T and GT→S for synchronous training. During testing, annotated as anomaly detection in
Fig. 1, the positive samples (Iin) are input to GS→T to generate corresponding negative samples
(Ire), and the difference of the input and output is calculated (Ires). Next, a post-processing
step is implemented to identify the appearance of lesion markers (Iseg). Finally, the fluid and
exudation areas were highlighted in the input OCT images. The architecture of the generator
and discriminator are introduced in section 2.1, network training details are discussed in section
2.2, a description of the objective function is provided in section 2.3, and lesion identification
post-processing is explained in section 2.4.

2.1. Generator and discriminator

The generator implemented in the original CycleGAN model was a residual block-based
convolutional network, in which residual blocks were only applied at a single scale (3×3 ) in deep
layers [17]. This residual generator was capable of extracting deep, semantic, and coarse-grained
feature maps. However, shallow, low-level, and fine-grained feature maps (mostly containing
edge, contour, and location information) were left out. As our primary objective is to translate
retinal images of varying shapes, this single-scale residual block is problematic, since it prevents
the generator from acquiring sufficient structural or location information. As such, a U-net shape
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architecture was used to construct the generators in our study [24], by combining deep and
shallow feature maps to provide a more precise output implementing skip connections, as shown
in Fig. 2(a). The network is in symmetric architecture, the left part is an Encoder that can extract
features from the input images and the right part is a Decoder that can construct the output images
from the extracted features. The Encoder was built in a fully convolutional network formation. It
concludes eight convolutional blocks, where each contains a 4 × 4 convolutional layer with a
stride of 2 and followed by a leaky rectified linear unit (Relu). Similarly, the Decoder consisted
of eight transposed convolutional blocks, where each contains a 4 × 4 upconvolutional layer with
a stride of 2 and followed by a leaky ReLu, except the last block, which was activated by a tanh
function. We use the 4 × 4 kernel size for widening the receptive field. This U-net structure
helped the generator to acquire multi-scale features and overcome the effects of shape or location
variability.

Fig. 2. The (a) generator and (b) discriminator architectures.

The CycleGAN implemented PatchGANs [25–27], initially developed for common GAN
applications such as style transfer and texture synthesis, as the discriminators. However, the
PatchGAN determines real or fake scores by evaluating image patches of a fixed size, which
prevents the network from perceiving global spatial information and causes the generator to
perform poorly for objects of varying shapes. Thus, a dilated convolutional network was used
here to resolve this issue [28], which can widen the receptive field of the network by incorporating
data from a larger region without introducing parameters, the network architecture is shown
in Fig. 2(b). The discriminator contains six 4 × 4 convolutional layers and three 3 × 3 dilated
convolutional layers, where all layers with corresponding strides (1 or 2) and followed by a Leak
ReLU, except the last layer, which without activation function. And the dilated convolutional
layers with dilated rates of 1, 2, and 4, respectively. It determines real/fake images by finding
real/fake regions in the images from a larger surrounding instead of judging a fixed size local
image patch, which helps the generator focus on those abnormal regions better.

2.2. Network training

Prior to training the anomaly detection model, input data were manually separated into normal
and abnormal categories based on retinal anatomy. Unlike conventional weakly supervised
algorithms, which typically train using only the normal set, the proposed model was trained using
both data categories. Retinal images containing abnormal and normal anatomy were annotated as
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xsn and xTn, respectively, then input to GS→T and , GT→S. As the retinal images differ widely in
appearance and retinopathies often exhibit shape changes or retinal thickening, making it difficult
to synthesize paired images. Previous studies on disease marker recognition in OCT images
[14–15] have relied on extensive preprocessing, including outer layer segmentation, flattening,
and patch clipping to adjust for variations in orientation, shape, or sample thickness, which might
change the lesions appearances or sizes, and it’s difficult for clinicians to visualize the lesions in
patches. In the present study, this issue was solved by applying the cycle consistent loss to learn
the bijective mapping between the two image domains and the self-supervised synthesis process
[17]. No preprocessing steps were applied to the training data except image-level labeling, the
model was trained to generate full-width paired normal images from the full-width abnormal
input OCT images. The reconstructed retinas were located at nearly the same position as in the
input images and only lesion areas were reconstructed into the normal anatomy.

Model performance was assessed using a set of images ysm not seen during the training process.
This test set included corresponding pixel-level binary segmentation maps Sm ∈ {0, 1}, where
fluid-filled areas were labeled with ‘1’ and other areas were labeled with ‘0’. Image-level labels
lm ∈ {0, 1} were also added, with normal and abnormal images labeled as ‘0’ and ‘1’, respectively.
Test images then input to GS→T to generate paired sets. Finally, the image backgrounds of the
original images and reconstructed images, which are often complex and noisy, were removed by
retina edge detection during pixel-level lesion segmentation.

2.3. Objective function

The intended purpose of the CycleGAN model is to transfer images of different styles, wherein
the appearance of objects remains mostly unchanged. The corresponding CycleGAN objective
function can be expressed as:

L(GS→T, GT→S) = LGAN(GS→T) + LGAN(GT→S) + η1Lcyc + η2Lidentity, (1)

where LGAN represents the GAN loss, η1 and η2 are balance parameters. Cycle consistency loss
Lcyc was used to constrain translations to be reversible and identity mapping loss Lidentity was
used to generate more realistic images, details can be found in [17].

In this study, normal retinal anatomy was reconstructed from abnormal images, in which
most retinopathy structures exhibited variations in shape. Excepting the customized network
architecture, the Multi-scale structure similarity perceptual reconstruction loss (MS-SSIM) [29]
was also used to compensate for this variability. The SSIM is a perceptual derived metric to
assess the structural similarity between two images simulate humans, lots of works have proved
that the SSIM performs better on assessing image quality than mean-based methods [30,31]. It
can be formulated as follows:

SSIM(x, y) = l(x, y) ∗ c(x, y) ∗ s(x, y)

=
2µxµy + C1

µx2 + µy2 + C1
+

2σxσy + C2

σx2 + σy2 + C2
+
σxy + C3

σxσy + C3

=
2µxµy + C1

µx2 + µy2 + C1
+
σxσy + C2

σx2 + σy2 + C2
,

(2)

where C1, C2 are constants and µx, µy,σx,σy,σxy denote means, standard deviations, and
cross-covariance of the image pair (x,y) from G and the corresponding input image respectively.
MS-SSIM is the multiscale extension of the SSIM, which can be formulated as follow:

MS_SSIM(x, y) =
M∏︂
j

SSIM(xj, yj), (3)

where (xj, yj) is the jth image patch and M is the scale level. It is more flexible than SSIM.
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The MS-SSIM can recognize geometric differences using area statistics, but often overlooks
smaller details and does not capture color similarity. As such, combining MS-SSIM with L1 or
L2 loss, which can calculate pixel-level differences, can provide a more optimal representation.
In this study, cycle consistency loss Lcyc in the initial CycleGAN was replaced by MS-SSIM loss
(Lss_cyc). The corresponding objective function can be expressed as:

L(GS→T, GT→S) = LGAN(GS→T) + LGAN(GT→S) + η1Lss_cyc + η2Lidentity, (4)

the Lss_cyc is calculated by:
Lss_cyc = λssLss + λl1L1, (5)

Lss = (1 − MS_SSIM(recS, realS)) + (1 − MS_SSIM(recT, realT)), (6)

L1 = l1(recS, realS) + l1(recT, realT), (7)

where reconstructed source domain images recS = GT→S(GS→T (x)), reconstructed target domain
images recT = GS→T (GT→S(x)), l1 represents the mean absolute error, MS represents MS-SSIM
metric, and λss, λl1, η1 and η2 are balance coefficients.

2.4. Anomaly detection

An anomaly score was also implemented to quantify deviations between abnormal and paired
reconstructed normal retinal images [15]. The metric used in this study can be expressed as:

A(x) = | |x − GS→T (x)| |2 + | |f (x) − f (GS→T (x))| |2, (8)

where f is the feature layer before the final layer in DT . This anomaly score should be lower
for normal-looking images and higher for anomalous images. Since GS→T was only trained to
generate normal images, GS→T (x) was visually similar to normal retina images, regardless of the
value of input x (which can be normal samples or abnormal samples).

In addition to acquiring image-level classification results, the following metric was also used
to calculate pixel-level differences:

•

A(x)=x − GS→T(x). (9)

Lesion localization is typically conducted by directly comparing the
•

A(x) with a threshold.
However, retinal OCT scans often exhibit structural variations or thickening that prevent the
use of a single threshold for every anomaly type. In this study, as shown in Fig. 3, abnormality
location was separated into the following steps: (1) as there is complicate random background
noise in the input OCT images, which is hard for the model to mimic perfectly, we segment the
top layer (ILM) and the bottom layer (RPE) of the retina to remove the background of the input
and output images with the graph search based edge detection algorithm [33] firstly (Fig. 3(a) and
Fig. 3(b)). (2) Then the residual image was acquired following Eq. (9) ((c) in Fig. 3, the image

shows the=
|︁|︁|︁|︁ •

A (x)
|︁|︁|︁|︁). (3) To better observe the residual pixels, we applied automatic binarization to

the residual image by the OTSU algorithm [34] (in Fig. 3(d)). (4) A mask was generated from the
residual image with the supervision of the edges and separated the residual image into two parts:
the overlap (marked by yellow in Fig. 3(e)) and non-overlap (marked by red in Fig. 3(e)). (5) For
the overlap, if the pixel value of the residual image

•

A(x)> 0 and the binary image B(x) = 255, the
pixel was labeled as exudates (labeled as green in Fig. 3(f)), and if the

•

A(x)< 0, the B(x) = 255,
the pixel is labeled as fluid (labeled as yellow in Fig. 3(f)). For the non-overlap, where B(x) = 0
was labeled as fluid (labeled as red in Fig. 3(f)). Finally, we concatenate all the detection results
to generate the whole segmentation map ((g) in Fig. 3, where exudate was labeled by green, fluid
was labeled by red).
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Fig. 3. The post-processing steps involved in anomaly detection. Subtracting the input
image (a) and the output image (b) to get the residual image (c). The binarized image (d) of
(c) is separated into two parts according to the mask (e), and lesions are detected in overlap
(highlight by yellow) and non-overlap (highlight by red) according to the pixels values. The
final segmentation map is (g).

3. Experiment

The proposed model was trained and evaluated using a publicly available retinal OCT image
dataset, obtained from [32]. Another public dataset containing binary segmentation maps,
obtained from [3], was also implemented to assess the model’s robustness. These two image
groups are hereafter denoted the K’s dataset and Chiu’s dataset, respectively. The model was
evaluated by determining (1) if the generated images were realistic, (2) if the model could
detect abnormal retina images, and (3) if the lesions could be accurately located. The proposed
method was compared with three existing algorithms, the f-AnoGAN [15], CycleGAN [17],
and Ganimorph [23] models. Ablation experiments were further implemented to determine the
effects of various network architectures and loss strategies.

3.1. Data

The proposed network was trained using K’s dataset, a large labeled retinal OCT image dataset
with more than 100,000 images, which was acquired using the Spectralis OCT system (Heidelberg
Engineering, Germany) from 5,319 patients [32]. These images included training, testing, and
validation data, which were annotated into four categories: diabetic macular edema (DME),
choroidal neovascularization (CNV), drusen, and normal. This dataset was initially constructed
for retinopathy classification and includes augmented images that have been rotated, tailored,
resized, or has been added random noise (which are commonly used image augmentation
methods), these augmentation images were initially implemented to prevent the overfitting
problem, whose appearances are far from the real images and we found they are limited effective
in improving the models’ performance but caused a huge increase of the training time (some
examples of the augmented images can be found in Supplement 1). So we excluded those images
with severe appearance changes. A total of 12,765 and 8,891 images were acquired from the
‘normal’ and ‘CNV’ categories, respectively, as few qualified images were available in the other
categories. These selected images were set as the training set of this work.

Unlike many conventional weakly supervised image generation algorithms, our method does
not require complex preprocessing steps prior to training, as the selected full-width images were
directly inputted to the network. The K’s data contains an independent test set with 250 images in
each retinopathy category. We selected all images in the CNV and the normal categories to test

https://doi.org/10.6084/m9.figshare.14851671
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our model. And the DME test images were also selected to test the robustness of the model, as
lesion shapes of the DME differed significantly from the CNV, and the DME lesion is completely
unknown to the model. Finally, 500 abnormal images (250 CNV, 250 DME) and 250 normal
images were set as the test set of our work. The K’s dataset did not include pixel-level anomaly
labels, two trained retinopathy reviewers with more than three years of experience provided labels
for fluid-filled regions in the testing images, and a clinical physician reviewed the result and fixed
the wrong labels.

Network robustness was further tested using Chiu’s dataset, which included retinal OCT
images from ten DME patients [3]. The data were acquired using the Spectralis OCT system
(Heidelberg Engineering, Germany) and featured a resolution of 768×496. This set included 78
manually labeled images, displaying corresponding fluid area segmentation results. The labeled
images were used to test the model and provided a comparison with baseline results acquired by
the kernel regression method, reported in [3].

All images were scaled into a resolution of 256×256 to fit the model, and the segmentation
maps were also resized to the same resolution. Test images were inputted directly to the network
to generate paired images. However, the OCT data included significant levels of background noise,
which impeded accurate lesion detection. In the final lesion segmentation step, an automated
graph search-based edge detection algorithm [33] was used to segment the top and bottom layers
of the retina to remove the background.

3.2. Training and evaluation details

The f-AnoGAN [15], CycleGAN [17], and Ganimorph [23] networks were also trained using
the K’s dataset, to provide a comparison with the proposed model. All models processed
256×256 input images and were trained for 40 epochs using two NVIDIA 2080Ti GPUs with
a batch size of 2. As f-AnoGAN was initially designed for generating images with a 64×64
resolution, two additional layers were added to the generator and discriminator, to produce
images with a 256×256 resolution. Two test sets, the K’s data and Chiu’s data with pixel-level
segmentation labels, were constructed to evaluate the trained network. And we empirically set
the hyperparameters as λss = 0.5, λl1 = 0.5, η1 = 1, η2 = 0.5.

Qualitative evaluation: Results were assessed visually as images were presented to two
trained OCT image readers with more than three years of experience. These participants evaluated
a Turing test set [28], consisting of 50 real normal retinal OCT images and 50 synthetic images,
in an attempt to differentiate generated and real data. The synthetic images were reconstructed
by the trained GS→T from normal (9 images) and abnormal samples (21 CNV images and 20
DME images). Input data exhibited a resolution of 256×256 and were acquired from the K’s test
dataset. The two readers provided classification results independently.

Quantitative evaluation: The proposed model was also evaluated quantitatively using two
test sets with both image-level and pixel-level labels, to assess anomaly detection accuracy. The
Image-level classification results were acquired by computing the anomaly score stated in Eq. (8).
Classification results were compared with three related algorithms, f-AnoGAN [15], CycleGAN
[17], and Ganimorph [23]. The f-AnoGAN model achieved unsupervised anomaly detection in
OCT images with a GAN-based technique, but they didn’t get an accurate lesion segmentation
map. CycleGAN is a basic algorithm used for unpaired image texture transfer. Ganimorph is
an improved version of CycleGAN, designed to be compatible with transfer between objects of
varying shapes. The pixel-level anomaly detection results were acquired following Fig. 3.

3.3. Results

Qualitative results: The qualitative results can be found in Fig. 4. The samples of DME, CNV,
and negative were fed to the model to generate respective normal-like images. The residual images
were generated by subtracting the generated image from the input image to better observe the
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difference between the input and output images. We found that the CycleGAN failed to reconstruct
normal sample from the DME sample and tends to cause some artifacts in the reconstruction of
the CNV samples, but it performs well in the normal samples. For the Ganimorph, it tends to
produce some artifacts in the generated images of the positive samples as the red arrows show in
Fig. 4, and it tends to produce some unnecessary changes in the reconstruction of the negative
sample, as shown in the residual images. The f-AnoGAN can generate normal samples from
the input, however, it has not only changed the abnormal areas but also changed the normal
areas, the location of the retina, and the background. And its generated images are not realistic.
Reconstructing the abnormal areas in the positive samples without severe artifact or extra change
and keeping the reconstructed sample the same as the input negative sample, the proposed method
possessed the best performance in the reconstruction of positive and negative samples.

Fig. 4. Qualitative results produced by the proposed algorithm. The images in the first row
are real images, including normal (columns 1), CNV (columns 2), and DME (columns 3)
types. The second row shows the corresponding generated normal-like images.

Besides, a Turing test was conducted using two trained OCT image readers who qualitatively
evaluated the generated results of the proposed method, as discussed above. The accuracy of
differentiating generated images from real images was 14% (7 images were recognized from a
set of 50 generated images and 4 real images were misclassified as synthetic images) and 16%
(8 generated images were recognized and 4 real images were misclassified) for the two readers,
respectively. The image readers were provided with images generated from DME samples, CNV
samples, and negative samples in the test set, as shown in Fig. 4. It is evident the trained model
performed well in representing normal anatomical variability and transferring between objects
with shape deformations, even for anomalies unseen during the training process. This was
evidenced by the DME samples, which were not included in the training set.

Quantitative results: Image-level anomaly detection accuracy was compared with three
comparative algorithms, f-AnoGAN [15], CycleGAN [17], and Ganimorph [23]. These results
are presented in Table 1, with the highest values in bold. The corresponding receiver operating
characteristic (ROC) curve, the area under the curve (AUC), and precision-recall (PR) scores are
provided in Fig. 5. These results suggest that our proposed method outperformed comparable
models in image-level anomaly detection. Our model can also generate normal anatomy retinal
images from abnormal retina images in an average of 0.039 seconds, which is significantly shorter
than the patch-based methods.

Lesion segmentation: Pixel-level anomaly detection was performed on the K’s data (including
CNV and DME samples) and Chiu’s data, and the fluid and exudates were detected. This technique
was also compared with lesion segmentation results produced by the CycleGAN and Ganimorph
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Fig. 5. The ROC curve (left) and precision-recall curve (right) and corresponding AUC
scores of the proposed technique, CycleGAN, and Ganimorph.

Table 1. Quantitative results using the proposed technique, f-AnoGAN [15], CycleGAN [17], and
Ganimorph [23]. Precision, sensitivity, F1-score, specificity, and AUC score were calculated to

evaluate Image-level anomaly detection performance

f-AnoGAN CycleGAN Ganimorph Proposed

Precision 0.6982 0.9341 0.9321 0.9671
Sensitivity 0.5021 0.8025 0.7897 0.8374
F1-score 0.5841 0.8633 0.8550 0.8976
Specificity 0.4976 0.7315 0.738 0.7864
AUC 0.5308 0.9323 0.9239 0.9694

algorithms. Results from the K’s and Chiu’s datasets are shown in Fig. 6. The f-AnoGAN
algorithm was excluded from the pixel-level segmentation experiment, as in this experiment
setting, training images were fed to the model directly, which results in the generated images
of the f-AnoGAN differing significantly from the input and with serious artifacts, as shown in
Fig. 4, the pixel-level results could not be acquired without the inclusion of pre-processing, like
flatten and clip. More examples can be found in the Supplement 1.

In K’s dataset, the Ganimorph works well in reconstructing CNV samples into normal (as
the cyan box shows in Fig. 6) but encounters problems in reconstructing the DME samples,
which with more serious shape deformation (as the orange box shows in Fig. 6). It can’t translate
some abnormal structures into normal anatomy (as the yellow arrows show in Fig. 6), which
affects the edge detection and so the lesion location results. The CycleGAN works worse than
the Ganimorph, it failed in translating samples in the DME and CNV categories, especially for
the lesion areas with shape deformation.

In Chiu’s dataset (as the blue box shows in Fig. 6), the Ganimorph can generate normal samples
from the input images, but there are still apparent artifacts in the output images as the yellow
arrow shows in Fig. 6. The CycleGAN failed to reconstruct samples in this dataset. The proposed
method achieves superior performance in these two data sets, reconstructing lesion areas into
normal anatomy and preserving other normal areas. Furthermore, the proposed method and the
CycleGAN works better in preserving the background of the input image while the Ganimorph
doesn’t, as the green arrows show in Fig. 6.

These results indicate the proposed model outperformed comparable methods in generating
plausible normal anatomy images from abnormal data with shape deformations and locating
lesions. The CycleGAN model produced better results than Ganimorph in image-level anomaly
detection but exhibited the worst performance in generating realistic normal images and lesion
segmentation. In general, CycleGAN worked well for transferring texture styles but failed to
translate examples with evident shape deformations. Ganimorph is better at overcoming the
shape deformation and reconstructing normal-look images but its outputting images often lack

https://doi.org/10.6084/m9.figshare.14851671
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Fig. 6. Pixel-level anomaly detection results for the CNV and DME samples in K’s
dataset (marked with the cyan and orange boxes, respectively), and DME samples in the
Chiu’s dataset (marked with the blue box). The input images, the ground truth of the
segmentation map (annotated as GT in the figure), the residual images, and the segmentation
map (annotated as Seg. in the figure) are provided. As illustrated, the Ganimorph generates
artifacts (the yellow arrows) and failed to preserve the background (the green arrows).

certain details and contain apparent artifacts. And images generated with Ganimorph were noisier
and more blurry than images produced using the proposed method, as demonstrated in Fig. 6.
More qualitative results can be found in the Supplement 1.

To better observe the capability of the model, we also measured the Dice coefficient for fluid
segmentation. All test samples with fluid were selected, the segmentation maps generated by the
mentioned models were compared with the ground truth. We reported the mean Dice coefficients
as shown in Table 2. The proposed method achieves the best performance in both two datasets,
which is commensurate with the qualitative results, indicating that the proposed model achieved
better lesion detection capabilities than alternative methods. This was particularly evident with
Chiu’s dataset, in which our fluid segmentation Dice value (0.64) was higher than the value
(0.53) reported by Chiu et al. [3], where a kernel regression method was implemented.

Ablation experiments: An ablation experiment was used to determine the contribution of
MS-SSIM and the architecture of the discriminator and generator to the result. The resulting
images and segmentation maps are shown in Fig. 7 and the corresponding mean Dice coefficients
for the fluid segmentation are provided in Table 3. We first implemented the original CycleGAN

https://doi.org/10.6084/m9.figshare.14851671
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Table 2. Dice coefficients for lesion segmentation of the k’s dataset and
Chiu’s dataset, acquired using CycleGAN [17], Ganimorph [21], and the

proposed model. The baseline was acquired from the original study by Chiu et
al. [3] and the best results are highlighted in bold.

K’s Dataset Chiu’s Dataset

Baseline [3] – 0.53 [3]

CycleGAN [17] 0.3785 0.2527

Ganimorph [23] 0.7025 0.4590

Proposed 0.8239 0.6444

architecture to reconstruct corresponding normal images from the input images, the model is
good at translating the texture but failed to handle the shape deformation, as shown in Fig. 7(1).
Then we replaced the cycle consistency loss Lcyc in the CycleGAN with the proposed (formulated
as Eq. (7)), referred to as ‘CycleGAN+ SS’. The model devoted attention to structural variability
but the quality of the results suffered for images exhibiting large shape deformations, as shown
in Fig. 7(2). We then replaced the original Resnet block-based generator with the proposed
U-net generator (referred to as ‘CycleGAN+SS+U_Ge’). The results in Table 3 demonstrate
that the Dice coefficients improved heavily with this architecture. However, the model still
performed poorly in reconstructing retinas with severe anatomical warping, since the original
patch-based discriminator cannot capture global spatial information, as shown in Fig. 7(3).
Then we replaced the original patch-based discriminator with the dilated convolution-based
discriminator and removed the MS-SSIM metric (referred to as ‘CycleGAN+U_Ge+Di_Dis’).
The result demonstrates that the lesion areas were capture and corresponding normal anatomic
structures were generated in most cases, but there were still some artifacts in the generated images,
as shown in Fig. 7(4). Finally, we added the MS-SSIM metric to overcome these problems
(referred to as ‘CycleGAN+SS+U_Ge+Di_Dis’), as it can better preserve the perceptual
features instead of noisy high-frequency information, this approach resulted in the most normal-
looking images, as seen in Fig. 7(5). In addition, dilated discriminator was combined with resnet
block-based generator (denoted ‘CycleGAN+SS+Res_Ge+Di_Dis’), which led to the mode
collapse displayed in Fig. 7(6). This was in part because the resnet block-based generator at a
single scale limits the discriminator from capturing sophisticated features.

Table 3. Dice coefficients for fluid segmentation of the ablation experiments. The loss objects,
discriminator architecture, and generator architecture were replaced to investigate the effects of

varying components.

Model
Discriminator Generator Loss Dice Coefficients

Patch Dilated Resnet Unet Lcyc Lss−cyc K’s Data Chiu’s Data

CycleGAN
√ √ √

0.3785 0.2527

CycleGAN+SS
√ √ √

0.4951 0.4103

CycleGAN+SS+U_Ge
√ √ √

0.6830 0.4458

CycleGAN+U_Ge+Di_Dis
√ √ √

0.7014 0.3644
CycleGAN+ SS+U_Ge+Di_Dis

(Proposed)
√ √ √

0.8239 0.6444
CycleGAN+ SS+Res_Ge+Di_Dis

√ √ √
Failed Failed

Table 3 shows the mean Dice coefficients for fluid segmentation produced by different network
architectures. The combination of MS-SSIM, U-net generator, and the dilated discriminator
produced the highest coefficients of 0.8239 and 0.6444 in the K’s dataset and the Chiu’s data,
respectively. The quantitative results are commensurate with the qualitative results, both of
them have proved the superiority of the proposed method. And these results suggested that the
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Fig. 7. Qualitative results of the ablation experiments. The same input images
were fed to all mentioned models. The output image (marked by the green boxes),
residual images and images with segmentation map of the (1) CycleGAN, (2) ‘Cycle-
GAN+SS’, (3) ‘CycleGAN+SS+U_Ge’, (4) ‘CycleGAN+U_Ge+Di_Dis’, (5) ‘Cy-
cleGAN+SS+U_Ge+Di_Dis’, and the (6) ‘CycleGAN+SS+Res_Ge+Di_Dis’ are
provided.

original CycleGAN structure works well for texture transfer but struggles with shape deformations.
However, including MS-SSIM can help the model focus on structural inconsistencies and regions
containing pixel variations. The U-net generator can learn multi-scale features used to reconstruct
realistic texture. A dilated discriminator can help the model capture global context information
and transfer the abnormal retina to a corresponding normal shape.

4. Conclusion and discussion

In this paper, a new methodology is presented for weakly supervised anomaly segmentation of
retinal OCT images. This technique achieved anomaly segmentation by subtracting generated
normal-looking anatomy from corresponding input abnormal retina images, as is common in
unsupervised anomaly detection. However, unlike conventional algorithms (most of which use
a single GAN model), where a complex multi-step preprocess was implemented to reduce the
effects of shape deformation and location variability, the proposed model uses a CycleGAN-based
network architecture to permit training with unpaired images. The model was trained using
full-width original OCT data and only implemented background removal in the final step of
pixel-level lesion segmentation, it saves much time and is user-friendly (the appearances of lesion
and retina are unchanged).

The cycleGAN was initially proposed to transfer texture between different image domains but
is not ideal for transferring between images exhibiting shape deformations. As such, the patch
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discriminator and Resnet block-based generator were replaced with a dilated discriminator and a
U-net generator, respectively. Multi-scale structure similarity perceptual reconstruction loss was
also included to help the model adapt to this unique transfer task. The network was trained and
tested using subsets of a public K’s database and Chiu’s dataset. The proposed model got 96.64%
AUC and 0.8239 dice coefficient on public K’s dataset, outperformed comparable algorithms in
both image-level anomaly screening and pixel-level lesion segmentation. On the other public
dataset, the model gets a 0.64 Dice coefficient, which is 0.11 higher than that in the original study.

It is also worth noting that our method achieved transformations between full-width retina
OCT images with an average time of 0.039 s, which is significantly faster than the patch-based
methods. In conclusion, we have demonstrated that our proposed technique can achieve real-time
style transfer for images exhibiting structural variations. It is also capable of accurate pixel-level
anomaly segmentation and should be generally applicable to unsupervised lesion contouring in
other unpaired medical data, particularly valuable for images whose anatomic structure might
vary due to the presence of lesions.

However, some issues remain to be solved. First, since the training set consists only of images
through the macular, so the model can’t generate correct images when the input images are
around the macular. This problem can be resolved by adding a few retinal images of non-macular
areas to the training set. Second, we found that the background noise of OCT images is difficult
to mimic due to randomness, especially when the lesion caused a huge shape deformation to the
retina. In this method, we have implemented a graph search-based edge detection method to
reduce the effect of the background noise, but this method is easy to affect by lesions. So a better
method of background noise reduction remains essential. Third, we found in the results that the
model was unable to translate the images with extremely severe lesions, in which the anatomical
structures were nearly indistinguishable, examples can be found in the Supplement 1. We are still
working on finding a way to detect lesions in such images.
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